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By measuring the optical characteristics of a flow the rheology of a viscous non-Newtonian fluid — an aque-
ous solution of hydrolyzed polyacrylonitrile — has been studied. The loss of stability by the system with cha-
otic fluctuations of transparency has been established. A kinetic model, as well as kinetic equations that
describe the flow of heterogeneous systems, have been suggested. It is expected that this approach will be
used in calculations in oil- and gas production and filtration of non-Newtonian systems in porous media.

For disperse systems with rheological properties dependent on time, e.g., thixotropic ones, nonlinear effects, in
particular, fluctuations of rheological characteristics, are connected with the interaction of structural elements [1]. The
interaction of the particles of a dispersed phase in purely viscous non-Newtonian systems does not lead to a noticeable
temporal change of the rheological properties because of the small size of the particles (D10 µm) and the absence of
a developed three-dimensional structure but has its effect on their steady-state rheology. An explanation of the rheol-
ogy of purely viscous non-Newtonian systems is possible by determining the optical characteristics of flow [2, 3].

Investigations were carried out on an experimental rig similar to that used in [2, 3]. Through a cylindrical
layer of a fluid flowing with a constant rate of shear, light was transmitted, the intensity of which was measured by
a photoelectronic multiplier. If voltage on the latter was proportional to the system transparency, a recorder registered
the graph of its dependence on time. The transparency increases on formation of aggregates of particles of the dis-
persed phase and decreases on their breakdown [2]. From a change in the transparency one can assess the dynamics
of the interaction of particles.

We investigated a 2% solution of partially hydrolyzed polyacrylonitrile (PAN) with a degree of hydrolyzation
of 65%. The rheological curve for the solution was plotted from the results of rotational viscosimetry on a "Rheotest-
2.1" at a temperature of 20oC. From Fig. 1 one can see the starting length of a pseudoplastic flow, which, after an
increase in the threshold rate of shear (γ = 600 1/sec), is replaced by a dilatant one. While a pseudoplastic flow is
encountered rather frequently, a dilatant flow is a rather rare and inadequately studied phenomenon, as noted by the
majority of researchers engaged in studying this flow [4–7]. According to [5, 8], dilatancy is observed in systems with
a high concentration of a solid phase and in rough dispersions. For the systems indicated, this is explained on the
basis of the theory of an "excluded volume" [7] on the assumption that in the process of flow the concentration of a
solvent constantly decreases due to its higher mobility, and this leads to an increase in dry friction between the solid-
phase particles and, as a consequence, to an increase in the apparent viscosity of the system.

In [4] it is shown that strong dilatancy may be observed in disperse systems with rather small particles
(smaller than 5 µm). This can be explained by their migration to the walls of the capillary, which is expressed as an
increase in the apparent viscosity of the system with the rate of shear [9, 10]. According to [11], a dilatant flow can
be observed in polymer solutions (in particular, of polymethacrylic acid), which is explained by the unfolding of the
chains of macromolecules with increase in the rate of shear and in the strength of interaction between them.

It should be noted that for the majority of dilatant systems one fails to observe a dilatant flow at all rates of
shear [4]. Transition from a low to a high rate of shear is accompanied by transition from a pseudoplastic flow to a
dilatant one (for example, for polyvinyl chloride [5]). As is seen from Fig. 1, a similar rheology is typical, in particu-
lar, of hydrolyzed PAN.
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An experiment on determination of the dynamics of transparency of the system in the process of flow was
carried out at a constant rate of shear. Investigations were carried out for four regimes: in the region of a pseudoplas-
tic flow (γ = 400 1/sec), at the inflection point (γ = 600 1/sec), near the inflection point in the region of the dilatant
flow (γ = 800 1/sec), and in the region of a developed dilatant flow (γ = 1200 1/sec). The results were presented as
the dependences of stresses on time and thereafter for these dependences spectral Fourier analysis was made by a
standard algorithm [12].

In the first case, the transparency does not change in time, i.e., dispersion flow is stable; in the second case,
the flow stability is disturbed, and there are almost periodic fluctuations of transparency (Fig. 2a); in the third case, a
quasi-periodic change in transparency with three characteristic frequencies are observed (2b), and in the fourth case,
the transparency undergoes a chaotic change (the power spectrum S(f)) (Fig. 2c), indicative of which is rapid damping
of the autocorrelation function k(t) (Fig. 3) [13].

Fig. 1. Rheological curve [1) experimental; 2) theoretical] of an aqueous solu-
tion of partially hydrolyzed PAN having a 2% concentration, τ, Pa; γ, sec–1.

Fig. 2. Power spectrum S(f) at γ = 600 (a), 800 (b), and 1200 sec−1 (c). f,
sec−1.
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Based on experimental investigations, we may conclude that the disturbance of the dispersion flow stability
leads to an increase in the hydraulic resistance and correspondingly to an increase in the apparent viscosity of the sys-
tem investigated. Here, for each new level of interaction there is a new value of the apparent viscosity of the system.

It should be noted that the disturbance of the dispersed-phase-flow stability is observed at a concentration of
partially hydrolyzed PAN in an aqueous solution of not less than 1%. Therefore, the reason for the disturbance of flow
stability seems to be due to the strengthening of the interaction between particles, which is usually observed on in-
crease in the dispersed-phase concentration and manifesting itself in the formation of associates of the dispersed-phase
particles [14–16]. To check the assumption made, investigations of the dispersion structure were carried out with the
aid of a Carl Zeiss optical microscope at different concentrations of the polymer. It has been established that at low
concentration (0.05%) the dispersed phase consists of separate deformed, randomly oriented elongated (in the form of
sticks) inclusions of size about 1 µm. As the concentration increases up to 2.0% or higher, larger associates are
formed due to aggregations that predominantly have a round or oval shape of size 5–10 µm. Moreover, as is seen
from Fig. 2c, with increase in the rate of shear, the average absolute value of transparency (of stress) is decreased,
indicating breakdown of the associates and increase in the number of elementary inclusions.

In order to determine the uniformity of the distribution of the dispersed-phase particles in the system from mi-
crophotographs, the dependences of the number of particles present in an arbitrary selected circle on its radius r, n(r),
were constructed for different concentrations of the active mass in a solution. Based on the dependences constructed,
the fractal dimensionality of the geometrical structure of the system was determined by analogy with [14]. Figure 4
shows the dependence of the fractal dimensionality D on the polymer concentration. As is seen from the figure, at
concentrations of up to 1% the geometrical structure of the system is homogeneous and the fractal dimensionality cor-
responds to the Euclidean dimensionality of the surface. A further increase in the concentration leads to a decrease in
the fractal dimensionality of the inhomogeneities, but at the 2% concentration it insignificantly (by 8%) differs from
the Euclidean dimensionality of the surface. Thus, in the first approximation the spatial distribution of the dispersed
phase may be considered homogeneous.

The foregoing allows the following kinetic model of the process observed to be suggested. With increase in
the rate of shear, the number of elementary inclusions increase at the expense of the breakdown of associates. As
the number of elementary inclusions increases, the interaction between them and the apparent viscosity of the system
increase.

The processes proceeding in concentrated dispersed systems are mainly of a dynamic character. Their theo-
retical study with account for the effects of coagulation even for the simplest cases is very complicated mathemati-
cally [15, 16]. Therefore, the construction of simpler models ensuring an accuracy sufficient for practice is of
definite interest.

In [1–21], based on the kinetic approach, thixotropic processes in complex systems were investigated, and it
was shown that within the framework of that approach it is possible to predict the rheological properties of a disper-
sion. However, in those investigations the influence of interaction of the dispersed-phase particles on the evolution of

Fig. 3. Autocorrelation function k(t) at γ = 1200 sec−1. t, sec.

Fig. 4. Fractal dimensionality D vs. the concentration C of the polymer.
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the rheological characteristics of the dispersion and the dynamics of motion of the disperse medium, which is of cer-
tain importance, were not taken into account. We will consider the motion of a dispersion in a tube of radius R.

Let N1 and N2 be the concentrations of elementary inclusions and associates, respectively. The names "ele-
mentary inclusions" and "associates" are conventional; the former is understood to be the particles that are not broken
under any experimental conditions the latter denotes larger particles formed as a result of aggregation of elementary
inclusions. Then, on the basis of the Lotka–Volterra [22] and Ferhu

..
lster models [23], neglecting, in the first approxi-

mation, the spatial inhomogeneity because of the relative smallness of the concentration of particles, the system of ki-
netic equations that describe the evolution of the dispersed phase may be presented in the form [1]

dN1

dt
 = (a2 γ − β1) N2 − a1 γN1 (1 − α1N1) − (β1 + β2) N1 + β1N ,   

dN2

dt
 = − a2N2 γ (1 − α2N2) + β2N1 , (1)

N1 (0) + N2 (0) ≤ N = const .

For an axisymmetrical case, the equation of liquid motion in a cylindrical tube has the form

ρ 
∂u

∂t
 = η 





∂2
u

∂r
2  + 

1

r
 
∂u

∂r




 + 

∆P

l
 . (2)

In the first approximation, to estimate the influence of the dynamics of motion of the liquid itself on the sys-
tem rheology we will assume that the rate of shear over the cross section is γ = −∂u ⁄ ∂r = const. Then we have

u = γ (R − r) . (3)

From Eq. (2), subject to (3), with the assumption adopted we obtain

ρ 
dγ
dt

 (R − r) = − 
η
r

 γ + 
∆P
l

 . (4)

Having multiplied each term of Eq. (4) by 2πrdr and divided by πR2, we average both of its sides over the cross sec-
tion of the tube:

dγ

dt
 = − 

6η

ρR
2
 γ + 3 

∆P

ρlR
 . (5)

The viscosity of the system η changes with time and can be determined from the formula [1]

η = η0 + η1 
N2

N
 . (6)

From Eq. (5), subject to (6), we find

dγ

dt
 = − 

6γ

ρR
2
 



η0 + η1 

N2

N



 + 3 

∆P

ρlR
 . (7)

From the system of equations (1) and (6), we many determine the dynamics of the change in the rheological parame-
ters of the disperse system. The stationary values of the parameters N1, N2, and γ can be found from Eqs. (1) and (7),
which yield

q2 = N
__

2 = 

β1 + 
β1

β2
 a2 γ0 + 

a1a2

β2
 γ0

2
 + √



β1 + 

β1

β2
 a2 γ0 + 

a1a2

β2
 γ0

2

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 2

 − 4β1Na0

2a0
 , (8)
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a0 = 
a1a2 γ0

2

β2
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a1a2
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3

β2
2  α2 + 
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If α1 and α2 are much less than a1 and a2, then from Eq. (8) we obtain
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From Eq. (10), subject to (11), we have
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Equation (12) yields
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The values of q1 and q2 are determined from Eq. (11), subject to Eq. (13).
In the first approximation, we assume that there are slight fluctuations of ν1, ν2, and ε around the stationary

position of q1, q2, and γ0 [22, 23]:

N1 = q1 (1 + ν1) ,   N2 = q2 (1 + ν2) ,   γ = γ0 + ε . (14)

Then, from (1) and (7), with (14) taken into account, we obtain an equation of a perturbed motion of the system from
the first approximation:

dν1

dt
 = − b1ν1 + 

q2

q1
 (a2 γ0 − β1) ν2 + 




α1q1 + 

a2q2

a1q1
 − 1




 a1ε ,

dν2

dt
 = 

q1

q2
 ν1 + (2a2q2 − 1) a2 γ0ν2 + (α2q2 − 1) a3ε ,
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dε

dt
 = − 

6
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6
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The threshold values of the parameters at which the loss of stability of the nonperturbed motion (Eqs. (1) and
(2)) of the system occurs can be determined from Eq. (15). For the equation of perturbed motion (15) the charac-
teristic equation has the form
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whence
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 + c1λ

2
 + c2λ + c3 = 0 , (17)
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The Hurwitz matrix for Eq. (17) has the form

A = 







c1
c3
0

   

1
c2
0

   

0
c1
c3










 . (18)

According to the Lyapunov theorem, for asymptotic stability of nonperturbed equations of motion (Eqs. (1)
and (2)) of the system it is necessary and sufficient that Eq. (17) could have negative real parts. Then, according to
the Hurwitz criteria, all major diagonal minors of matrix (18) must be positive, i.e.,

c1 > 0 ,   c1c2c3 > 0 ,   c3 (c1c2 − c3) > 0 . (19)

Moreover, according to the Lyapunov theorem, if at least one of the minors in (18) is negative, then the nonperturbed
motion of the system is unstable at any nonlinear terms on the right-hand sides of Eqs. (1) and (2). Thus, the resulting
conditions (19) make it possible to determine the threshold values of the parameters at which an unstable state of the
system sets in. Since the shear stress τ in the system can be determined from the formula
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τ = ηγ , (20)

from (20), subject to (6), (11), and (14), for the limiting case t → ∞ we have

τ = γ0 










η0 + 
η1

1 + 
a2

β2
 γ0 + 

a1a2

β1β2
 γ0

2











 . (21)

Numerical calculation of the value of τ from Eq. (20) has been performed at the following values of the pa-
rameters (that were determined from the experimental curves of the flow with the aid of the least-squares method
[24]): η0 = 4 mPa⋅sec; η1 = 20 mPa⋅sec; a1 = a2 = 10−8; β1 = β2 = 10−6 sec−1. The results of calculation together
with the results of experimental investigations are presented in Fig. 1. As is seen from the figure, the results of the
theoretical investigations agree well with experimental data. At the above-indicated values of the parameters and a
value of the rate of shear γ above 600 sec−1, the stability of the system is perturbed. Next, as is shown in [12, 22,
25–27], in a system similar to that under study, at values of the parameters above the threshold one, chaos sets in be-
cause of the 2-, 3-, or 5-fold increase in the period of fluctuations, which agrees with the results of the investigations
carried out.

The results obtained can be used for hydrodynamic calculations in oil and gas production, as well as to de-
scribe filtration of non-Newtonian systems in porous media.

NOTATION

A, Hurwitz matrix; a1 and a2, nonnegative numbers characterizing the intensity of destruction of elementary
inclusions and associates; C, polymer concentration; c1, c2, and c3, matrix elements; D, fractal dimensionality; f, fre-
quency, sec−1; k(t), autocorrelation function; l, length of the tube, m; N, concentration; N1 and N2, concentration of
elementary inclusions and associates, respectively; n(r), integers; ∆P, pressure drop, MPa; q1, stationary value of N1;
q2, stationary value of N2; R, radius of the tube, m; r, coordinate; S(f), power spectrum; t, time, sec; u, velocity of
the liquid at any point of the tube cross section in the axial direction, m/sec; α1 and α2, negative numbers charac-
terizing the retardation of the intensity of destruction of particles on increase in their number; β1 and β2, nonnegative
numbers that determine the rate of recovery of the concentration of particles of both species, sec−1; γ, rate of shear,
sec−1; η, dynamic viscosity of the system, mPa⋅sec; η0 and η1, constants; λ, characteristic numbers; ν1 and ν2, small
fluctuation; ρ, density, kg/m3; τ, shear stress, Pa.
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